Homework 2, due 9/17
Only your five best solutions will count towards your grade.

1. Let $C=\partial D(0,2)$ denote the circle of radius 2 around the origin, oriented positively. Compute the following integrals:
(a)

$$
\int_{C} \frac{1}{z^{2}-1} d z
$$

(b)

$$
\int_{C} \frac{e^{z}}{(z-1)^{n}} d z
$$

for all integers $n \geq 0$.
2. Suppose that $f: \mathbf{C} \rightarrow \mathbf{C}$ is holomorphic, and for some $d, C>0$ we have

$$
|f(z)|<C(1+|z|)^{d} \quad \text { for all } z \in \mathbf{C}
$$

(a) Show that if $d<1$, then f is constant.
(b) Show that if $d \leq k$, then f is a polynomial of degree at most k.
3. Let $f: \mathbf{C} \rightarrow \mathbf{C}$ be a non-constant holomorphic function. Show that the image $f(\mathbf{C})$ is dense in \mathbf{C}.
4. Let $D=D(0,1) \subset \mathbf{C}$ be the open unit disk, and $u: D \rightarrow \mathbf{R}$ be harmonic, i.e.

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Here x, y are the real and imaginary parts of z, and you may assume that u has continuous second partial derivatives. Show that there is a holomorphic function $f: D \rightarrow \mathbf{C}$ such that $u=\operatorname{Re}(f)$. (Hint: consider what f^{\prime} would have to be.)
5. Suppose that $\gamma:[0,1] \rightarrow \mathbf{C}$ is a smooth curve parametrizing the boundary $\partial \Omega$ of an open set $\Omega \subset \mathbf{C}$ oriented positively. Show that the area $A(\Omega)$ is given by

$$
A(\Omega)=\frac{1}{2 i} \int_{\gamma} \bar{z} d z
$$

6. Prove that if $N>0$ is an integer and f is holomorphic on $D(0,2)$ with

$$
\left|f^{(N)}(0)\right|=N!\sup \{|f(z)|:|z|=1\}
$$

then $f(z)=c z^{N}$ for some $c \in \mathbf{C}$.
7. Suppose that $f(z)=\sum_{n \geq 0} c_{n} z^{n}$ defines a holomorphic function on $D(0,1)$, such that $f(z) \in \mathbf{R}$ for all $z \in D(0,1) \cap \mathbf{R}$. Show that $c_{n} \in \mathbf{R}$ for all n.
8. Consider the improper integral

$$
I=\lim _{R \rightarrow \infty} \int_{0}^{R} e^{i x^{2}} d x
$$

on the positive real axis. Prove that

$$
I=\lim _{R \rightarrow \infty} \int_{\gamma_{R}} e^{i z^{2}} d z
$$

where γ_{R} is the line segment $\gamma_{R}(t)=t e^{i \theta}$ for any $\theta \in(0, \pi / 2)$, with $t \in[0, R]$. Using that $\int_{0}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} / 2$, deduce that

$$
I=\frac{\sqrt{\pi}}{2} e^{\pi i / 4}
$$

